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Asymptotic solutions for optical properties of
large particles with strong absorption

Ping Yang, Bo-Cai Gao, Bryan A. Baum, Yong X. Hu, Warren J. Wiscombe, Michael I. Mishchenko,
Dave M. Winker, and Shaima L. Nasiri

The transverse wave condition is not applicable to the refracted electromagnetic wave within the context
of geometrical optics when absorption is involved. Either the TM or the TE wave condition can be
assumed for the wave to locally satisfy the electromagnetic boundary condition in a ray-tracing calcu-
lation. The assumed wave mode affects both the reflection and the refraction coefficients. As a result,
nonunique solutions for these coefficients are inevitable. In this study the appropriate solutions for the
Fresnel reflection–refraction coefficients are identified in light-scattering calculations based on the ray-
tracing technique. In particular, a 3 3 2 refraction or transmission matrix is derived to account for the
inhomogeneity of the refracted wave in an absorbing medium. An asymptotic solution that completely
includes the effect of medium absorption on Fresnel coefficients is obtained for the scattering properties
of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with
both preferred and random orientations. © 2001 Optical Society of America

OCIS codes: 010.1290, 010.1310, 010.3920, 290.5850, 290.1090, 280.1310.
1. Introduction

The optical properties of dielectric particles such as
aerosols and ice crystals in the atmosphere are fun-
damental to a number of disciplines, including atmo-
spheric radiation transfer and airborne or
satelliteborne remote-sensing applications. In a re-
cent book1 Mishchenko et al. comprehensively re-
viewed various methods that have been developed to
solve the scattering and absorption properties of par-
ticles for a variety of geometric morphologies and
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electromagnetic characteristics of the scatterers.
Accurate numerical methods such as the discrete di-
pole approximation method2,3 and the finite-
difference time-domain ~FDTD! technique4,5 are
applicable in practice only to size parameters smaller
than 20 because the computational requirements in-
crease quickly with size parameter. Although ana-
lytical solutions are available for some particle
shapes, such as spheres6 and spheroids,7,8 the corre-
sponding numerical computations are usually quite
challenging. For example, the computation of the
optical properties of spheroids based on an analytical
solution in terms of a series of special functions may
not be stable when the size parameter is larger than
approximately 30–40. It is worth noting that recent
developments for the T-matrix method9,10 permit ex-
act solutions for the optical properties of spheroids
and finite circular cylinders for size parameters up to
200.11 There is no single method to solve for the
optical properties of nonspherical particles across the
entire size parameter spectrum.

It is common to use the ray-tracing technique12–15

for nonspherical particles that have sizes much larger
than the incident wavelength. Previous applica-
tions of the ray-tracing technique were focused pri-
marily on scattering computations for the visible and
near-infrared wavelengths, for which the imaginary
part of the refractive index is small. For these
weakly absorptive spectra, the conventional Snell
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law and Fresnel formulas can be used to account for
ray reflection and refraction at the particle surface.
However, the optical properties of large dielectric
particles at wavelengths with strong absorption are
fundamental to many practical applications. For ex-
ample, the scattering and absorption properties of ice
crystals at infrared wavelengths must be known for
the retrieval of cirrus clouds by use of satellite radi-
ance data such as that from the Advanced Very High
Resolution Radiometer16 ~AVHRR! and the Moderate
Resolution Imaging Spectroradiometer17 ~MODIS!
imagers. Under conditions of cirrus clouds, inter-
pretation of information from the High Resolution
Interferometer Sounder18 ~HIS! hyperspectrum in
the atmospheric window region ~8–12 mm! also re-
quires knowledge of the optical properties of ice crys-
tals.

When ray optics is applied to the infrared spectrum
in regions of strong absorption, the refracted wave
inside the particle is inhomogeneous in the sense that
the planes of constant phase and constant amplitude
are not parallel.19 Current applications of the ray-
racing technique assume that planes of constant
hase and constant amplitude are parallel. The in-
omogeneity associated with the reflected wave sub-
tantially complicates the behavior of rays at the
article surface and inside the medium. Stratton19

and Born and Wolf20 have discussed this inhomoge-
neity and its effect on the Fresnel reflection coeffi-
cients associated with a complex refractive index.
In particular, Stratton19 ~Ref. 19, Section 9.9! has
solved the problem of the reflection of a plane elec-
tromagnetic wave by a conducting surface. Re-
cently, Zhang and Xu21 and Yang and Liou22

addressed the effect of an inhomogeneous wave on
the ray-tracing calculation. Zhang and Xu21 ex-

ressed the Fresnel coefficients without explicit use
f the complex refractive index. However, they did
ot account for the effect of the inhomogeneity on
ave attenuation that is the most important physical
rocess involved in ray propagation within an absorb-
ng medium. Yang and Liou22 discussed the result

of the inhomogeneous effect on ray propagation by
introducing an effective refractive index, but they
employed the high-frequency approximation20 in the
calculation of reflection and refraction coefficients.
Inasmuch as the effect of inhomogeneity on the ray-
tracing calculation has not been solved completely, it
is necessary to study this problem further. Our in-
tent in this study is to develop an analytical asymp-
totic method that comprehensively accounts for the
inhomogeneity effect when the optical properties
~such as the single-scattering albedo and the phase
function! of strongly absorbing particles with sizes
much greater than the incident wavelength are de-
rived.

To compute the optical properties of dielectric par-
ticles with strong absorption we first derive the re-
flection and refraction coefficients for the electric field
in terms of an apparent refractive index without us-
ing the high-frequency approximation. The reflec-
tion and refraction coefficients incorporate the
inhomogeneous effect on the direction of ray propa-
gation and the Fresnel coefficients. Subsequently,
we derive the asymptotic solution expressed in an
analytical form for large particles with strong absorp-
tion. In Section 2 we discuss the various wave
modes of an inhomogeneous wave refracted into a
particle when absorption is involved. We show that
the electric or magnetic field may not be perpendic-
ular to the direction of ray propagation because of the
effect of strong absorption. The Fresnel coefficients,
in particular the transmission coefficient for the com-
ponent of the refracted field that is parallel to ray
propagation, are reformulated. In Section 3 we
present the analytical solution for the optical proper-
ties of large polyhedral particles with strong absorp-
tion. The solution is derived on the basis of the
electromagnetic relationship between the near field
and the far field. In Section 3 we also present nu-
merical results of the asymptotic solution for hexag-
onal ice crystals. Finally, conclusions of this study
are given in Section 4.

2. Physical Basis for Ray Tracing in the
Absorptive Case

In this section it is shown that the transverse wave
condition cannot be applied to both the electric and
the magnetic fields associated with a ray refracted
into an absorbing medium. In addition, we show
that a wave mode subject to an electric boundary
condition is not unique within the context of geomet-
rical optics when absorption is involved. The behav-
ior of the refracted wave affects not only the Fresnel
refraction coefficients but also the Fresnel reflection
coefficients. In the following discussion it is shown
that there are four possible combinations of
reflection–refraction coefficients that depend on wave
modes. Whereas each combination of reflection and
refraction coefficients is a mathematically rational
solution, only one set of coefficients should be used in
the ray-tracing solution. The choice of the proper
wave mode for the refracted wave in a ray-tracing
calculation is made through comparison of the
geometrical-optics solution and the analytical Mie re-
sult for the scattering properties of a very large ~size
parameter of the order of 1000! sphere with strong
bsorption.
Let us consider the application of the geometrical-

ptics method to solve for the scattering properties of
particle that is large and absorptive. In this case,

he rays that are refracted into the particle are
argely absorbed. Thus we need consider only the
rst-order reflected–refracted rays because of the
mall amount of energy carried by the rays that un-
ergo internal reflections. To examine the first-
rder reflection–refraction characteristics and the
orresponding polarization features of the electric
eld, we begin with the phase variation for the field
ssociated with a complex refractive index. Let
hree unit vectors, êi, êr, and êt, indicate the propa-

gating directions for the incident, reflected, and re-
fracted rays, respectively. To present this study
systematically, we must recapitulate some results ob-
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1533
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tained by Yang and Liou. Following those au-
thors, the fields associated with these rays can be
written as follows:

Ei~r! 5 Eio exp~ikêi z r!, (1a)

Er~r! 5 Ero exp~ikêr z r!, (1b)

Et~r! 5 Eto exp@ik~Nrêt 1 iNnn̂! z r#, (1c)

where Eio, Ero, and Eto are the amplitude vectors for
he fields; k 5 2pyl, in which l is the wavelength in

vacuum; and n̂ is a unit vector that is normal to the
particle surface and to points into the particle. The
parameters Nr and Nn in Eq. ~1c! are given by

Nr 5 221y2$mr
2 2 mi

2 1 sin2 zi

1 @~mr
2 2 mi

2 2 sin2 zi!
2 1 4mr

2mi
2#1y2%1y2, (1d)

Nn 5 221y2$2~mr
2 2 mi

2 2 sin2 zi!

1 @~mr
2 2 mi

2 2 sin2 zi!
2 1 4mr

2mi
2#1y2%1y2, (1e)

in which mr and mi are the real and the imaginary
parts, respectively, of the refractive index and zi is the
ncident angle, given by zi 5 sin21@1 2 ~êi z n̂!2#1y2.
ote that Nn ~denoted Ni* in Ref. 22! was not pre-

sented in the previous study. Physically, Nr is the
parameter that determines the phase and Nn is the
parameter that determines the absorption, as we il-
lustrate in the following discussion.

From Eqs. ~1a!–~1c! and the continuity of the wave
phase at the medium interface, it follows that Snell’s
law for an absorbing medium can be mathematically
expressed in the form

êr 5 êi 1 2~êi z n̂!n̂, (2a)

êt 5 êiyNr 1 ~cos zt 2 cos ziyNr!n̂, (2b)

where the refractive angle is given by zt 5
sin21@sin~zi!yNr#. Equation ~2a! means that the in-
cident and reflected rays are spatially symmetric
about the direction normal to the particle surface at
the incident point, which is the standard Snell law for
the reflection direction. However, Eq. ~2b! indicates
that the refracted direction is determined not by mr
but by Nr. For this reason, Nr is referred to as the
real part of the apparent refractive index, which de-
pends on the incident configuration and the dielectric
constant of the medium for determining the direction
and the phase of a refracted wave. The attenuation
of a refracted field as a result of absorption depends
on the direction of observation. If the direction is
along n̂, the attenuation is determined by Nn, as is
evident from Eq. ~1c!. However, if we trace the re-
racted wave along the direction of the refracted ray,
.e., along position vector r 5 lêt, in which l is the

penetration depth of the ray, the electric field is given
by

Et~lêt! 5 Eto exp@2kNn~n̂ z êt!l#exp~ikNr l !. (3)

Obviously, the factor Nn~n̂ z êt! is the imaginary part
of the apparent refractive index that governs the at-
534 APPLIED OPTICS y Vol. 40, No. 9 y 20 March 2001
tenuation of the electric field associated with the
rays. We denote this factor Ni. Thus, for a ray that
impinges upon an absorbing medium, the apparent
refractive index in the complex format is ~Nr 1 iNi!.
It can be proved that

Ni 5 Nn~n̂ z êt! 5 Nn cos zt 5 mr miyNr. (4)

Figure 1 shows the real and imaginary parts of the
nherent and apparent refractive indices of ice at in-
rared wavelengths of 11 and 12 mm, for which sub-
tantial absorption exists. The optical properties of
ce at these two wavelengths are important for many
pplications in satellite remote sensing.17 Note

that, for ice particles, wavelengths near 11 mm are in
the Christiansen band, where absorption dominates
the extinction.23 The inherent refractive index is de-
termined uniquely by the dielectric characteristic of
the medium, i.e., permittivity, which does not depend
on the incident configuration of a ray. As is shown
in Fig. 1, the real part of the apparent refractive
index increases with the increase of incident angle,
whereas the imaginary part of the refractive index
decreases with the increase of the incident angle.
Obviously, in terms of wave attenuation per unit
length along the propagation direction of a ray, the
particle is less absorptive at a large incident angle.
For incident angles larger than 10°, the inhomoge-
neous effect that is due to strong absorption on both
real and imaginary parts of the refractive index be-
comes noticeable.

We can show that various wave modes could satisfy
the electromagnetic boundary condition associated
with reflection and refraction at the interface of two
media, one of which is strongly absorptive. First, let
b̂ be a unit vector perpendicular to the incident plane.
The unit vectors that are parallel to the incident
plane and perpendicular to ray propagation direc-

Fig. 1. Comparison of the inherent and apparent refractive indi-
ces for ice at 11 and 12 mm.
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tions for the incident, reflected, and refracted waves
are given by

âi 5 êi 3 b̂, âr 5 êr 3 b̂, ât 5 êt 3 b̂. (5)

t should be pointed out that b̂âi,r,têi,r,t constitute right-
handed coordinate systems. The incident and re-
flected waves are within the nonabsorbing medium.
As a result of the homogeneous wave properties of the
incident and reflected rays, the condition of a trans-
verse wave ~hereafter referred to as the TEM mode!
can be imposed on both electric and magnetic fields for
these rays. Thus the corresponding amplitude vec-
tors of the electric fields can be decomposed in the form

Eio 5 Eio,aâi 1 Eio,bb̂, (6a)

Ero 5 Ero,aâr 1 Ero,bb̂. (6b)

The Maxwell equations in time-independent form are
given by

E~r! 5 ¹ 3 H~r!y~2ikε!, (7a)

H~r! 5 ¹ 3 E~r!yik, (7b)

where ε is permittivity, given by ε 5 ~mr 1 imi!
2.

We have chosen the time-harmonic factor as
exp~ikct!, in which c is the speed of light in vacuum.
If this factor is selected as exp~2ikct!, the sign of the
imaginary part of the refractive index is negative.1,24

Using Eq. ~7b!, we can obtain the amplitude vectors of
magnetic fields associated with the incident and re-
flected rays as follows:

Hio 5 êi 3 ~Eio,aâi 1 Eio,bb̂! 5 Eio,bâi 2 Eio,ab̂, (8a)

Hro 5 êr 3 ~Ero,aâr 1 Ero,bb̂! 5 Ero,bâr 2 Ero,ab̂. (8b)

or the refractive wave in an absorbing medium, a
ransverse-wave condition cannot be imposed simul-
aneously on the electric and the magnetic fields be-
ause of the inhomogeneity effect; that is, the TEM
ave mode is not valid in this case.
In the following discussion, first we examine the

eflecting characteristics of an absorbing medium for
arious wave modes. To derive the reflection coeffi-
ient, we can assume that the electric field is trans-
erse with respect to the propagation direction of the
ay ~hereafter this mode is referred to as the TE
ode!, so the refracted electric field can be expressed

n the form

Eto 5 Eto,aât 1 Eto,bb̂. (9)

From Eqs. ~1c!, ~4!, ~7b!, and ~9! and the relationship
f n̂ 5 cos ztêt 2 sin ztât, the refracted magnetic field

in the TE mode can be obtained as follows:

Hto~r! 5 ~Nrêt 1 iNnn̂! 3 ~Eto,aât 1 Eto,bb̂!

5 ~Nr 1 iNi!Eto,bât 2 ~Nr 1 iNi!Eto,ab̂

1 iNn sin zt Eto,bêt. (10)

From Eq. ~10! it is evident that the refracted mag-
etic field has a nonzero component along unit vector
ˆt ~ray direction! when Nn is not zero, i.e., when ab-
sorption is involved. At the interface of two media,
the electromagnetic boundary condition requires that
the tangential components of electric and magnetic
fields be continuous. Thus we have the following
relationships:

Eio,b 1 Ero,b 5 Eto,b, (11a)

Eio,b cos zi 2 Ero,b cos zi 5 @~Nr 1 iNi!cos zt

1 iNn sin2 zt#Eto,b, (11b)

Eio,a 1 Ero,a 5 ~Nr 1 iNi!Eto,a, (11c)

Eio,a cos zi 2 Ero,a cos zi 5 cos zt Eto,a. (11d)

The preceding equations can be solved to yield the
reflection coefficients for the two polarization config-
urations:

RTE,' 5 Ero,byEio,b

5
cos zi 2 @~Nr 1 iNi!cos zt 1 iNn sin2 zt#

cos zi 1 @~Nr 1 iNi!cos zt 1 iNn sin2 zt#

5
cos zi 2 ~Nr cos zt 1 iNn!

cos zi 1 ~Nr cos zt 1 iNn!
, (12a)

RTE,\ 5 Ero,ayEio,a 5
~Nr 1 iNi!cos zi 2 cos zt

~Nr 1 iNi!cos zi 1 cos zt
.

(12b)

Similarly, if we assume that the magnetic field of the
refracted wave is transverse with respect to the ray
direction ~hereafter, this mode is referred to as the TM
mode!, the reflection coefficients are then given by

RTM,' 5
~Nr 1 iNi!cos zi 2 ε cos zt

~Nr 1 iNi!cos zi 1 ε cos zt
, (13a)

RTM,\ 5
ε cos zi 2 ~Nr cos zt 1 iNn!

ε cos zi 1 ~Nr cos zt 1 iNn!
. (13b)

herefore, considering the two wave modes and
wo polarization configurations, four combinations
re possible for the reflection coefficients: ~RTM,\,

RTM,'!, ~RTE,\, RTE,'!, ~RTE,\, RTM,'!, and ~RTM,\,
RTE,'!. Each of these four combinations is a math-
ematically rational solution derived from the electro-
magnetic boundary condition when an absorptive
medium is involved. However, only one of the four
solutions should be computationally correct in the
ray-tracing calculation relative to the process of scat-
tering an electromagnetic wave by a dielectric parti-
cle with absorption. It should be pointed out that
the Maxwell equations, subject to the appropriate
boundary conditions, always have a unique solution,
as in the case of Mie theory. The explanation for the
multiple solutions for the reflection coefficients is
that the electromagnetic boundary condition is lo-
cally imposed within the context of geometrical op-
tics, which permits treatment of the inhomogeneous
refracted wave as a refracted ray, thereby providing
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1535
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the basis for a ray-tracing procedure. Accordingly,
we are looking for the pair of reflection coefficients
that provide the best numerical agreement with the
exact solution in scattering computation.

To identify the computationally correct pair of re-
flection coefficients from among the preceding four
combinations, we consider the scattering geometry in
Fig. 2 for a strongly absorptive sphere with a size
much larger than incident wavelength. In this case
the scattered field is composed primarily of the con-
tributions from diffraction and external reflection.
The incident energy associated with area element ds
n the projected area is scattered in angular element
in ududw in which u is the scattering angle. The
cattered intensity at a distance r that is far from the
article is given by

Is 5 I0

uRu2

r2 U ds
sin ududw

U 5 I0

uRu2a2

4r2 , (14)

where a is the radius of the sphere; I0 and Is are
incident and scattered intensities, respectively; R is a
reflection coefficient without specification of a wave
mode and polarization configuration. To derive Eq.
~14! we used two relationships, ds 5 a2 cos zi sin
zidzidw and u 5 p 2 2zi. However, according to the

efinition of the scattering phase function denoted P,
one can define the following relationship:

Is 5
ss

4pr2 PI0, (15)

Fig. 2. Scattering geometry for a large sphere with strong ab-
sorption.

DLP~u! 5
I'

d~u! 2 I\
d~u! 1 I'

r~u! 2 I\
r~u!

I'
d~u! 1 I\

d~u! 1 I'
r~u! 1 I\

r~u!
5

~ka!2@2J1~ka
~ka!2@2J1~ka
536 APPLIED OPTICS y Vol. 40, No. 9 y 20 March 2001
where ss is the scattering cross section. Therefore,
after the two polarization configurations are ac-
counted for, the contribution of the external reflection
to the phase function can be obtained by a comparison
of Eqs. ~14! and ~15!:

Pr~u! 5
1
2

~uR\u2 1 uR'u2!pa2

ss

5
1
2

~uR\u2 1 uR'u2!
Qe 2 Qa

, (16)

where Qe and Qa are the extinction efficiency and the
absorption efficiency, respectively. The value of Qe
is 2 because the particle is very large, whereas Qa is
determined by the ratio of refracted energy to the
incident energy associated with the projected area.
Note that the divergence factor introduced by van de
Hulst25 is absent in Eq. ~16! because the rays that are
ransmitted through the sphere are ignored here.

An improved diffraction formulation has been de-
ived by Yang and Liou26 that, unlike the conven-

tional method that is limited to scattering angles
smaller than 90°, can be applied to the entire scat-
tering angular region. When the improved method
is applied to the diffraction by a sphere, the scatter-
ing amplitude matrix25 is given by

FS2 S3

S4 S1
G 5

~ka!2

4
2J1~ka sin u!

ka sin u

3 Fcos u~1 1 cos u! 0
0 1 1 cos uG , (17)

where J1 is the Bessel function of the first kind. The
phase function that includes the contribution from
diffraction and external reflection can be obtained
from Eqs. ~16! and ~17! as follows:

P~u! 5
~ka!2

8~Qe 2 Qa!
F2J1~ka sin u!

ka sin u G2

3 ~1 1 cos2 u!~1 1 cos u!2 1
1
2

~uR\u2 1 uR'u2!
Qe 2 Qa

.

(18)

In addition to the phase function, one should use the
polarization configuration to identify the correct com-
bination of reflection coefficients. When the inci-
dent radiation is unpolarized, the polarization
feature of scattered radiation can be specified by the
degree of linear polarization ~DLP!. When scattered
radiation is composed of diffraction and external re-
flection, the DLP associated with the phase function
in Eq. ~18! can be given as follows:

u!yka sin u#2~1 1 cos u!2~1 2 cos2 u! 1 4~uR'u2 2 uR\u2!
u!yka sin u#2~1 1 cos u!2~1 1 cos2 u! 1 4~uR'u2 1 uR\u2!

,

(19)
sin
sin
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where I' and I' ~I\ and I\ ! are the scattered in-
ensity associated with diffraction and external re-
ection, respectively, when the electric field is
olarized along a direction that is perpendicular ~par-
llel! to the scattering plane.
Figure 3 shows the phase function and the DLP

omputed from Mie theory and the geometrical-optics
ethod at a wavelength of 12 mm. The Mie compu-

ational code developed by Wiscombe27 is used in this
study. Because the size parameter is extremely
large ~x 5 1047.2!, the scattered energy at a large
scattering angle ~approximately 20° in this case!
omes primarily from the reflection of incident rays.
hrough comparison of the geometrical-optics solu-

ion and the Mie results, we can identify the correct
eflection coefficient pair. Evidently, the reflection
oefficient pair ~RTM,\, RTE,'! produces a phase func-
ion and a DLP consistent with the Mie solution at
arge scattering angles, where the external reflection
ominates. As the Mie solution for the DLP is pos-
tive for the entire scattering domain, the reflection of
he incident wave with a vertical polarization config-
ration is much larger than the reflection when the
olarization is parallel to the scattering plane. For
his reason, if we incorrectly apply reflection coeffi-
ient RTM,' for the incident wave polarized perpen-

dicularly with respect to scattering plane, substantial
errors can result for both phase function and DLP, as
is evident from Fig. 3.
Figure 4 is similar to Fig. 3, except that the wave-
length is 11 mm and the real part of the refractive
index is close to unity ~see Fig. 1!. It can be seen
hat the phase function values at large scattering
ngles at 11 mm are much smaller than the cor-
esponding results at 12 mm because external re-
ection is weaker for the former wavelength.
owever, the correctness of the reflection coeffi-

ients used in the computation is also critical to the
hase function and the DLP, even in the optically
enuous case. As a matter of fact, the errors asso-
iated when the wrong wave mode is assumed for
he refracted wave are even more pronounced for
he results shown in Fig. 4 than for those shown in
ig. 3. From these results it is clear that the cor-
ect wave mode must be used for the refracted wave
n the derivation of the reflection coefficients, re-
ardless of the magnitude of the real part of the
efractive index whenever the particle is strongly
bsorptive.
A comparison of the ray-tracing method and Mie

heory for obtaining the phase function of spheres
as been presented by Liou and Hansen28 for a

polydispersive case that has an assumed particle
size distribution. For the monodispersive case ~a
system composed of particles that have a single size
and shape!, a comparison study has been presented

y Macke et al.29 for spheroids and finite circular
cylinders at a near-infrared wavelength, which
Fig. 3. Phase function and the degree of linear polarization com-
puted from geometrical optics compared with the Mie solution at
l 5 12 mm.
Fig. 4. The same as Fig. 3, except that here the wavelength is
11 mm.
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1537
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shows that the applicable size parameter for the
geometrical-optics method is approximately 60. In
addition, these authors29 pointed out that the
size parameter required for a convergence of
the exact solution and the geometrical-optics solu-
tion is larger for spheres than for nonspherical par-
ticles.

The results of this study suggest that the
geometrical-optics method can be applied to much
smaller size parameters when strong absorption is
involved. Figure 5 shows the phase function com-
puted from Eq. ~18! in comparison with the Mie so-
lutions. Evidently, when the size parameter is
larger than approximately 30, one can use the
geometrical-optics solution to approximate the exact
solution. For size parameters larger than 50, the
geometrical-optics solution essentially converges to
the exact solution in the side and backscattering di-
rections.

From the preceding discussions associated with
Figs. 3–5, it is clear that TM and TE modes should
be applied to the components of electric fields
that are parallel and perpendicular, respectively,
to the incident plane. By using this combination
of wave modes, one can straightforwardly derive
the refracted wave on the basis of electromag-
netic boundary conditions. Through application
of the ~TM\, TE'! wave mode to the refracted

Fig. 5. Comparison of the phase functions computed from Mie th
at wavelengths of 11 and 12 mm.
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wave, we can obtain the refracted electric field as
follows:

Et,o 5 Et,o,aât 1 Et,o,bb̂ 1 Et,o,gêt, (20a)

SEto,a

Eto,b

Eto,g

D 5 FTa 0
0 Tb

Tg 0
GSEio,a

Eio,b
D , (20b)

where

Ta 5
2~Nr 1 iNi!cos zi

ε cos zi 1 ~Nr cos zt 1 iNn!
, (20c)

Tb 5
2 cos zi

cos zi 1 ~Nr cos zt 1 iNn!
, (20d)

Tg 5
i2Nn sin zt cos zi

ε cos zi 1 ~Nr cos zt 1 iNn!
. (20e)

Note that in Eqs. ~20! the dependence of these
parameters on the wave mode is not specified explic-
itly. It should be pointed out that the transmission
matrix in the conventional ray-tracing scheme is a
2 3 2 matrix. When absorption is involved, the
transmission matrix becomes a 3 3 2 matrix. When
absorption of the medium is absent, Tg is reduced to
zero because Nn is zero and Eqs. ~20! are reduced to

and from the geometrical-optics method for three moderate sizes
eory
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the conventional Fresnel refraction coefficients.

3. Asymptotic Solution for Scattering and Absorption
Properties of Large Polyhedral Particles with Strong
Absorption

A. Physical Basis for the Asymptotic Solution

In Section 2 it was shown that the conventional
geometrical-optics approach in terms of the superposition
of diffraction and external reflection can well approxi-
mate the Mie solution for the spherical-particle case
when the size parameter is large and the particle is ab-
sorptive. Because the variation in the surface normal
direction is continuous for a sphere, a continuous distri-
bution of the externally reflected energy is obtained.
However, this is not true if the particle geometry is a
polyhedron such as a hexagonal plate or column, which is
the basic geometric structure of ice crystals in cirrus
clouds. In the numerical solution, there is a physically
incorrect discontinuous distribution of scattered energy
for any specific orientation of the particle.

For example, consider the scattering of radiation
by a hexagonal ice column when the incident radia-
tion is perpendicular to the c axis of the particle and
parallel to a line that connects two symmetric apexes
of particle cross section. If the rays refracted into
the particle are ignored because of absorption, the
phase function can be written as follows:
where L and a are the length and the semiwidth,
espectively, of the hexagonal columns and d~x! is the

Dirac delta function. To avoid any possible confu-
sion, in Eqs. ~21! we use us to indicate the scattering
angle and ws for the azimuthal angle of the scattering
plane. Here the plane of ws 5 0° is the plane that
contains the incident direction and the c axis of the

article. On the right-hand side of Eq. ~21a!, the
rst term represents the contribution from diffrac-
ion and the second term represents the contribution
rom external reflection. Obviously, the second term
s nonzero at only two angles, as is expressed by the
elta functions. This singularity is inherent in the
conventional geometrical-optics method. The delta
reflection involved in Eqs. ~21! originates from the
same physical mechanism of the forward delta trans-
mission that has been well explained by Takano and
Liou12 and Mishchenko and Macke.30 It should be
pointed out that the singularity in Eq. ~21b! could be
overcome numerically in the ray-tracing calculation if
the particles were randomly oriented in space. The
average intensity is given by the scattered energy
divided by the corresponding solid angle elements.
The discontinuity could be avoided, given proper res-
olution for the solid angle elements with sufficient
orientations of the particles, i.e., with sufficiently
random orientation.

To circumvent this particular disadvantage of the
conventional method for a specific orientation, we
apply the geometrical-optics method to solve for the
internal field inside the particle, following Yang and
Liou.31 The scattered far-field, extinction, and ab-
sorption cross sections are given by

Es~r! 5
k2 exp~ikr!

4pr
~ε 2 1! ***

n

$E~r*! 2 r̂@r̂ z E~r*!#%

3 exp~2ikr̂ z r!d3r9, (22a)
sext 5 Im3 k
uEiu

~ε 2 1!***
n

E~r*!Ei~r*!4d3r9, (22b)

sabs 5
k

uEiu2
εi ***

n

E~r*! z Ei~r*!d3r9, (22c)

respectively. The integrals involved in Eqs. ~22! can be
calculated by use of the ray-by-ray integration algo-
rithm.31 From the ray-by-ray integration calculation
and Eqs. ~22!, the amplitude scattering matrix and the
extinction and absorption cross sections are given by
P~us, ws! 5
3k2 La
8pss

Hsin@~kLy2!sin us cos ws#

~kLy2!sin us cos ws

sin@~Î3 kay2!sin us sin ws#

~Î3 kay2!sin us sin ws
J2

3 ~1 1 cos2 us!~1 1 cos us!
2

1
Î3 paL

ss
@d~ws 2 py2! 1 d~ws 1 py2!#d~us 2 2py3!#~uRTM,\,zi5py6u2 1 uRTE,',zi5py6u2!, (21a)

ss 5 Î3aL~2 2 uRTM,\,zi5py6u2 2 uRTE,',zi5py6u2!, (21b)
FS2~ês! S3~ês!
S4~ês! S1~ês!

G 5
k2~ε 2 1!

4p **
surface

cos zi

Nr 1 iNi 2 ês z êt
Fâs z ât âs z b̂ âs z ês

b̂s z ât b̂s z b̂ b̂s z ês
GFTa 0

0 Tb

Tg 0
G Fâi z â0 âi z b̂s

b̂ z â0 b̂ z b̂s
G

3 exp@2ik~êi 2 ês! z r*#$1 2 exp@2kNil~r*!#exp@ik~Nr 2 ês z êt!l~r*!#%d2r9, (23a)
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sext 5
2p

k2 Re@S1~êi! 1 S2~êi!#, (23b)

sabs 5
1
2 **

particle surface

cos ztNr~uTau2 1 uTbu2 1 uTgu2!

3 $1 2 exp@22kNil~r9!#%d2r9, (23c)

where b̂s is a unit vector perpendicular to the scat-
ering plane, ês is along the scattering direction, âs 5

ês 3 b̂s, âo 5 êi 3 b̂s, and l~r9! is the ray penetration
depth with the incident point at r9. The other vari-
ables involved were defined above. If the absorbing
particle is large, it is expected that exp@2kNil~r9!#3
. In this case, analytical expressions can be de-
ived for the integrations involved in Eqs. ~23a! and
23c! if the surface of the particle is locally flat, as in
he case of polyhedral geometry.

For a given flat face of the particle surface, Fresnel
eflection does not vary with the location at the face
ecause the incident angles are the same for all the
oints on this face. Thus the following matrix is in-
ependent of the position of a point on a flat surface:

FS̃2 S̃3

S̃4 S̃1
G

j

5
cos zi

Nr 1 iNi 2 ês z êt
Fâs z ât âs z b̂ âs z ês

b̂s z ât b̂s z b̂ b̂s z ês
G

3 FTa 0
0 Tb

Tg 0
GSâi z âo âi z b̂s

b̂ z âo b̂ z b̂s
D . (24)

Therefore, the integral in Eq. ~23a! should actually be
evaluated only with respect to the phase variation
over the local flat faces of the particle. For purposes
of evaluation the surface of a polyhedral particle can
be divided into a number of area elements shaped as
parallelograms and triangles. For a parallelogram
or a triangular face, the position vector of a point on
this face is expressed by

r 5 Hr0 1 jr1 1 hr2 parallelogram
r0 1 j~1 2 h!r1 1 hjr2 triangle , (25)

where r0 is the position vector of the apex of the geo-
metric shape and r1 and r2 constitute the neighboring
two sides of the shape. j [ @0,1# and h [ @0,1#. From
Eqs. ~24! and ~25!, the integration of phase variation
over a parallelogram area element yields

Di 5 **
face j

exp$ik~êi 2 ês! z rj%d
2rj

5 urj,1 3 rj,2u *
0

1

*
0

1

exp@ik~êi 2 ês!~rj,0 1 hrj,1

1 jrj,2!#dhdj
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5 urj,1 3 rj,2uexp@ik~êi 2 ês! z ~rj,0 1 rj,1y2 1 rj,2y2!#

3
sin@k~êi 2 ês! z rj,1y2#

k~êi 2 ês! z rj,1y2
sin@k~êi 2 ês! z rj,1y2#

k~êi 2 ês! z rj,1y2
.

(26a)

Similarly, if the phase variation is integrated over a
triangular area, it follows that

Di 5 **
face j

exp$ik~êi 2 ês! z rj%d
2rj

5 urj,1 3 rj,2u
exp@ik~êi 2 ês! z rj,0#

ik~êi 2 ês!~rj,2 2 rj,1!
3 Hexp@ik~êi

2 ês! z rj,2y2#
sin@k~êi 2 ês! z rj,2y2#

k~êi 2 ês! z rj,2y2
2 exp@ik~êi

2 ês! z rj,1y2#
sin@k~êi 2 ês! z rj,1y2#

k~êi 2 ês! z rj,1y2 J . (26b)

The scattering matrix that includes the contribution
from all the faces can be written as

FS2~ês! S3~ês!
S4~ês! S1~ês!

G 5
k2~ε 2 1!

4p (
j

h~êi z n̂j!

3 DjFS̃2~ês! S̃3~ês!
S̃4~ês! S̃1~ês!

G
j

, (27)

here h~êi z n̂j! is a step function that indicates
whether the face is illuminated by incident radiation:

h~êi z n̂j! 5 H1 êi z n̂j . 0
0 êi z n̂j # 0 . (28)

Once the amplitude scattering matrix is given, the
calculation of the phase function is straightforward
on the basis of the definition presented by van de
Hulst.25 It should be pointed out that a special form
of Eq. ~27! is given here for a hexagonal particle with-
out incorporation of the inhomogeneity effect of the
refracted wave on the transmission matrix.31 The
result presented in this study is more general and can
be applied to any polyhedron with strong absorption.

Inasmuch as the multiple scattering calculation is
based on the solution of the radiative transfer equa-
tion, the most important parameter of concern is the
single-scattering albedo rather than the extinction or
absorption cross section. In particular, in remote-
sensing applications a predescribed optical thickness
is usually used in the calculation of look-up tables for
the microphysical or optical properties of cloud par-
ticles. For this reason, in the present calculation we
focus on the phase function and the single-scattering
albedo. The latter parameter is defined as

ṽ 5
sext 2 sabs

sext
, (29)
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where the extinction and absorption cross sections,
sext and sabs, respectively, can be calculated from

qs. ~23b! and ~23c!.

B. Numerical Results for Hexagonal Ice Plates and
Columns

As an application for the asymptotic solution for light
scattering by a strongly absorptive particle, we
present numerical results for ice crystals composed of
hexagonal plates and solid columns. A hexagonal
shape is selected here because this shape has been
studied extensively for inference of cloud optical
thickness and particle size in remote-sensing appli-
cations ~see, e.g., Minnis et al.,32 Baum et al.,33 and
Han et al.34!.

Figure 6 shows a comparison of phase functions
computed by the FDTD method and by the asymp-
totic theory @Eq. ~27!# for hexagonal ice crystals of two
izes: 2ayL 5 25 mmy25 mm and 2ayL 5 40 mmy40

mm, where L and a are the length and the semiwidth,
respectively, of the hexagonal crystal. A random
orientation condition is assumed for ice crystals in
both the asymptotic and the FDTD calculations. It
can be seen from Fig. 6 that the asymptotic solution
more closely approximates the FDTD results for the
larger particle size of 40y40 mm. Although one

ight infer that the asymptotic theory can be applied
o hexagonal ice crystals with sizes larger than ap-
roximately 40 mm in the infrared window region, the
onvergence between the FDTD and the asymptotic
heories will, in fact, depend on the magnitude of
bsorption. For large particles at infrared wave-
engths, the FDTD calculation is computationally ex-
ensive. Thus the asymptotic theory provides an
fficient way to estimate the phase function of a large

Fig. 6. Comparison of the phase function computed from the
FDTD technique and from the present asymptotic theory for hex-
agonal ice crystals.
article with strong absorption. This advantage of
he asymptotic theory in the calculation of the phase
unction is useful in practice. For example, the pa-
ameterization of cloud long-wave radiative proper-
ies requires that the phase function information be
btained through the use of either an asymmetry
actor or a scaling factor,35 which can be provided by
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1541
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the asymptotic theory efficiently and accurately when
the particle size is larger than approximately 40 mm.

Figure 7 shows a comparison of the single-
scattering albedo computed from the FDTD and the
asymptotic theories. In the figure, the results com-
puted for the equivalent spheres are also shown.
Following Mitchell et al.,36 Fu et al.,37 and Grenfell
and Warren,38 we define the radius of the equivalent
sphere for a hexagonal particle as follows:

re 5
3
4

V
A

5
3
2

Î3y2aL

Î3y2a 1 L
, (30)

where V is the volume of nonspherical particles and A
s the projected area. Because strong absorption is
ssumed in the computation of the single-scattering
lbedo in the asymptotic theory, the result does not
hange with the variation of particle size. As a re-
ult, the asymptotic theory can lead to substantial
rrors in the single-scattering albedo calculation for
mall and moderate particle sizes. However, from
he trend of the FDTD solution, it is expected that
onvergence between the FDTD and asymptotic re-
ults can be reached when the particle size is of the
rder of 200. Approaches developed by Fu et al.,37

Mitchell,39 and Baran and Havemann40 can be used
to overcome the shortcomings of the asymptotic the-
ory in calculating single-scattering albedo. It
542 APPLIED OPTICS y Vol. 40, No. 9 y 20 March 2001
should be pointed out that these approaches cannot
provide the information for the phase function. For
this reason, a combination of these approaches ~for
the computation of single-scattering albedo! with the
asymptotic theory ~for the computation of phase func-
tion! would be more useful in practice.

Figures 8 and 9 show the phase functions of ran-
domly oriented ice columns and plates in comparison
with the phase functions of equivalent spheres. At
large scattering angles, the phase function values are
essentially the same for the spherical and the non-
spherical particles. The external reflection becomes
insensitive to particle geometry once the random ori-
entation condition is assumed. However, for moder-
ate particle sizes ~re 5 26.7 mm!, substantial
differences can be noted for the phase function at
scattering angles in the 10–60° region for the two
particle shapes.

Figure 10 shows the variation of the single-
scattering albedo of hexagonal ice plates and columns
that are randomly oriented in the infrared region
from 8 to 16 mm. Also shown are the real and imag-
nary parts of refractive-index data compiled by War-
en.41 Evidently, the variational pattern of the

single-scattering albedo follows that of the real part
of the refractive index. As we have mentioned, the
real part of the refractive index has a value close to
unity in the vicinity of 11 mm, and the corresponding
Fig. 8. Comparison of the phase function of hexagonal columns
with that of equivalent spheres.
 Fig. 9. As for Fig. 8 but for hexagonal plates.
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imaginary part is substantially large. Near 11 mm,
he extinction of incident radiation is dominated by
bsorption and is known as the Christiansen effect.23

As a result, a minimum is noted in the single-
scattering albedo. From Fig. 10 it can also be seen
that the single-scattering albedo for hexagonal par-

Fig. 10. Comparison of the single-scattering albedo value

Fig. 11. Incident and scattering geometri
ticles is larger than for spheres. This property has
been noted in a comparison of the FDTD solution
with the equivalent spherical results that are shown
in Fig. 7.

It is a common practice to assume that ice crystals
are randomly oriented in space. However, in the

puted for hexagonal ice crystals and equivalent spheres.

an ice crystal with preferred orientation.
s com
es for
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1543
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atmosphere specific orientations are preferred for
large plates and columns. For plates in an environ-
ment of a low Reynolds number, such as in a typical
mid-latitude cirrus cloud, the a axis ~the hexagonal
asymmetric axis! of the particle tends to face verti-
ally, whereas the c axis tends to be oriented hori-
ontally. In other words, the crystals tend to align
hemselves so as to reach a stable state in the crystal
alling process. The effect of preferred particle ori-
ntation on the phase function at visible wavelengths
as been discussed by Takano and Liou42 and Rock-

witz.43 As we pointed out in Subsection 3.A, the
pplication of a conventional ray-tracing technique
ill produce a discontinuity of the scattered energy
nd consequently cannot produce a continuous phase
unction. This shortcoming is avoided with the
resent analytical asymptotic theory. When pre-
erred orientations are assumed for ice crystals, the
hase function depends not only on the scattering
ngle but also on the scattering azimuthal angle, i.e.,
n which scattering plane the scattered field is ob-
erved. Figure 11 shows the geometry for the scat-
ering configuration related to a plate oriented with
ts c axis aligned vertically. The principal plane

~ws 5 0°! is defined as the plane that contains the
ncident and the zenith directions. The plane that is
ormal to the incident direction is denoted by the
otted ellipse, whereas an arbitrary scattering plane
s denoted by the dashed ellipse. On a given scat-

Fig. 12. Phase functions computed for h
544 APPLIED OPTICS y Vol. 40, No. 9 y 20 March 2001
ering plane the positive scattering angle is mea-
ured, with a view along the incident direction,
lockwise from the principal plane. For example, on
he principal plane the scattering angle is positive if
t is measured from the forward-scattering direction
o the vertical zenith, whereas the scattering angle is
egative if it is measured from the forward-scattering
irection to the nadir view.
Figure 12 shows the phase function for hexagonal

lates that have a preferred orientation for four scat-
ering azimuthal angles. Ice crystals are rotated
andomly about their c axes. The strong forward
eak caused by diffraction can be seen for the four
ases with different scattering azimuthal angles.
or ws 5 0°, very strong scattering peaks can be seen

at scattering angles of 120° and 60° for incident ze-
nith angles of 30° and 60°, respectively. The scat-
tering maxima at 120° and 60° correspond to the
specular reflection from the top faces of the plates.
For ws 5 0°, 30°, 60°, significant asymmetry in the

hase function is observed in the scattering-angle
egions of ~0°, 180°! and ~20°, 2180°!. However,
ymmetry is observed for ws 5 90°, as is expected.

For plates with a preferred orientation, there are a
number of ripple structures in the phase function
that are caused by phase interference.

Figure 13 shows the phase function for ice columns
with preferred orientations. The columns, ran-
domly rotating about the zenith direction, are hori-

onal plates with preferred orientations.
exag



Fig. 13. As for Fig. 12 but for columns.
Fig. 14. Single-scattering albedo for ice crystals that have preferred orientations compared with the results for randomly oriented
crystals.
20 March 2001 y Vol. 40, No. 9 y APPLIED OPTICS 1545
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zontally oriented but rotate randomly about their c
xes. The ripple structure of plates caused by the
hase interference as noted for Fig. 12 is largely
moothed out for oriented columns because the ori-
ntation of the particles in columns is more random.
s for plates, the specular reflection feature is appar-
nt when ws 5 0°.
Figure 14 shows the single-scattering albedo that

orresponds to the phase functions in Figs. 12 and 13.
ompared with the results for randomly oriented
articles, the single scattering for both oriented
lates and columns is smaller if the incident zenith
ngle is less than approximately 60°. For plates,
here is a pronounced peak in the single-scattering
lbedo at the incident zenith of 70°. This peak is
hought to be due to the external reflection for the top
ace of the plate that is increasing with increasing
ncident zenith angle. However, when this angle ap-
roaches 90°, the projected area of the top face is
ssentially zero, and the external reflection from the
ide faces, along with diffraction, dominates the scat-
ered field.

4. Summary and Conclusions

An asymptotic solution in an analytical format for
deriving the scattering properties of a general poly-
hedral particle with strong absorption has been pre-
sented. For scattering calculations involving
nonspherical particles such as aerosols and ice crys-
tals, we showed that the transverse-wave condition is
not applicable to the refracted electromagnetic wave
when absorption is involved. In the geometrical-
optics solution for wave propagation in an absorbing
dielectric medium, either the TM wave condition ~i.e.,
when the magnetic field of the refracted wave is
transverse to the wave direction! or the TE wave
condition ~i.e., when the electric field is transverse to
he propagating direction of the wave! can be as-

sumed for the refracted wave to satisfy the electro-
magnetic boundary condition. The wave mode
assumed for the refracted wave affects both reflection
and refraction coefficients. As a result, a nonunique
solution for these coefficients is derived from the elec-
tromagnetic boundary condition. Through compar-
ison of the asymptotic geometrical-optics solution and
results determined from Mie theory for absorbing
spheres, it has been shown that TM and TE wave
modes should be applied to two polarized components
that are parallel and perpendicular, respectively, to
the incident plane. In this study we have identified
the appropriate solution for the Fresnel reflection
coefficients in the ray-tracing calculation. We pre-
sented the 3 3 2 refraction or transmission matrix
that completely accounts for the inhomogeneity of the
refracted wave in an absorbing medium. Based on
the Fresnel coefficients for an absorbing medium, we
derived the asymptotic solution in an analytical for-
mat for the scattering properties of a general polyhe-
dral particle. Numerical results were presented for
hexagonal plates and columns with both preferred
and random orientation. The asymptotic theory
produces reasonable accuracy in the phase function
546 APPLIED OPTICS y Vol. 40, No. 9 y 20 March 2001
calculations in the infrared window region ~wave-
lengths near 10 mm! if the particle size is of the order
f 40-mm diameter or larger.
However, because strong absorption is assumed in

he computation of the single-scattering albedo in the
symptotic theory, the single-scattering albedo does
ot change with variation of the particle size. As a
esult, the asymptotic theory can lead to substantial
rrors in the computation of single-scattering albedo
or small and moderate particle sizes. However,
rom a comparison of results with the FDTD solution
t is expected that a convergence between the FDTD
esults and the asymptotic theory results will be
eached when the particle size approaches 200 mm.

For two infrared wavelengths, 11 and 12 mm, we
howed that the phase function at side-scattering and
ackscattering angles is insensitive to particle shape
f random orientation is assumed. For preferred ori-
ntations, however, we showed that the phase func-
ions for plates and columns are significantly
ifferent. Additionally, when a preferred two-
imensional orientation condition is assumed, the
hase function is observed to have a strong depen-
ence on the scattering azimuthal angle. Moreover,
umerical results show that the single-scattering al-
edo has a strong dependence on the inclination an-
le of incident radiation with respect to the rotating
xis for the preferred particle orientations.
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ASA’s MODIS project and partially by the U.S. Of-
ce of Naval Research and the Atmospheric Radia-
ion Measurement program sponsored by the U.S.
epartment of Energy under contract DE-AI02-
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